Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods

José M. Carcione¹, Hans B. Helle², Géza Seriani¹ and Milton P. Plasencia Linares³

¹ Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy
² Norsk Hydro a.s., 0 & E Research Centre, Bergen, Norway
³ Depto. de Sismología, Fac. de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentina

Received: June 6, 2004; accepted: November 15, 2004.

ABSTRACT

Using an improved global pseudospectral modeling algorithm we synthesize seismograms generated by oceanic and continental earthquakes. Attention is given to attenuation, to explicit modeling of boundary conditions at the ocean-bottom interface, simulation of the Rayleigh window and interface-wave propagation. The algorithm is based on Fourier and Chebyshev differential operators and a domain-decomposition technique - one grid for the fluid and another grid for the solid. Wave propagation in the oceanic and continent crusts and mantle is modeled by using a viscoelastic stress-strain relation based on memory variables.

The main physical phenomena associated with an ocean-crust system are modeled, including Scholte waves, leaking Rayleigh waves, dispersive modes, and the Rayleigh-window phenomenon due to a minimum in the reflection coefficient of the ocean bottom, which has not been simulated with direct methods. In particular, we model Rayleigh modes (mainly the M_{11} mode), and coupled Rayleigh-Scholte waves, for which the dispersion relation is solved in simple cases. Also, we model the effects of random inhomogeneities in the crust and mantle by using a von Kármán autocovariance probability function, which simulates scattering-Q-effects.

The 2-D modeling code allows general material variability, and a complete and accurate characterization of the seismic response of oceanic and continental earthquakes. A synthetic seismogram for an earthquake in the South Atlantic region is provided.

KEY WORDS: Seismogram, earthquake, attenuation, modeling, Rayleigh waves, Scholte waves, Rayleigh window.

INTRODUCTION

Understanding the physics of wave propagation of earthquakes is essential for a proper interpretation of the seismic properties and geometrical features of the continental and oceanic crusts. The dispersion equation of simple systems, such as an oceanic layer overlying an elastic lossless half-space, can be solved using analytical methods (Biot, 1952; Ewing et al., 1957, p. 156). More complicated situations, involving arbitrary velocity variations, fluid-solid interfaces and attenuation with complex mode coupling (e.g., Ben-Menahem, 1965; Butler and Lomnitz, 2002; Lomnitz et al., 2002), require an accurate numerical modeling algorithm using direct grid methods, so that general variability of the seismic properties can be modeled (see Carcione, 2001, Chapter 8; and Carcione et al., 2002 for a review). Normal-mode coupling (Capdeville et al., 2000), Galerkin methods (Takeuchi et al., 2000), finite differences (Thomas et al.,
and global pseudospectral methods (Coutel and Mora, 1998; Igel, 1999) have been used to treat this problem. Recently, Komatitsch and Tromp (2002a,b) developed a three-dimensional spectral-element approach for the simulation of global seismic propagation throughout the globe. Their algorithm includes anisotropy, attenuation based on memory variables (Emmerich and Korn, 1987; Carcione, 2001, p. 110), the effects of 3-D mantle and crustal models, the oceans, the Earth’s ellipticity, topographic features, bathymetry, rotation and self-gravitation. The effect of the ocean is based upon an equivalent surface load integral, which does not require meshing, but this approximation breaks down for short periods, typically below 5 s. (The oceans are assumed to be incompressible.) Komatitsch and Tromp use Legendre-basis functions in contrast to Priolo et al. (1994), Seriani (1998) and Priolo (1999), who use Chebyshev-basis functions.

For wave propagation in the oceanic crust, in particular, for modeling interface waves and the Rayleigh-window effect, we explicitly model the slip boundary condition at the ocean-bottom interface by using a domain-decomposition technique and pseudospectral methods. One mesh is used to discretize the ocean and another the crust. For each mesh, a method developed by Carcione (1992) is used. It involves a Fourier method along the interface direction and Chebyshev along the direction perpendicular to the surface, or the ocean-bottom interface. Thus, the grid points are equally spaced in the horizontal direction and are given by the Gauss-Lobatto collocation points in the vertical direction (denser at the edges of the mesh). The domain-decomposition approach for viscoelastic waves is illustrated in Carcione (1991, 1994a). Modeling examples are given in Kessler and Kosloff (1991) and Tessmer et al. (1992) for elastic media, and in Carcione (1996) for viscoelastic media. We consider a flat interface, but the algorithm can be extended to model topographic features of the ocean bottom by using a mapping transformation (e.g., Carcione, 1994b).

We first verify the domain decomposition by comparing the numerical and analytical solutions in a lossless model. A test of the anelastic model simulates the Rayleigh-window phenomenon. This is a viscoelastic effect, implying that the energy incident on the boundary at angles within that window is substantially transmitted. Borcherd et al. (1986) present theoretical and experimental results for a water-stainless steel interface (e.g., Carcione, 2001, p. 214). To our knowledge, the Rayleigh window has not previously been simulated with direct grid methods.

The modeling is then used to model propagation in the oceanic and continental crusts. The physics is first illustrated for a homogeneous ocean bottom (Biot, 1952). Interface waves are dispersive and several modes can propagate. The fundamental mode is a Scholte wave at short wavelengths in terms of the water depth, and becomes a Rayleigh wave at long wavelengths. We model the propagation of the fundamental Rayleigh mode in the continental crust, the \(M_{11} \) mode. As a final example we show a synthetic seismograms generated by an earthquake in the South Atlantic; lateral variations in seismic velocity are modeled. Since the coherency of the wave field can be degraded by the heterogeneous nature of the crust at small scales, we use a spatially isotropic von Kármán autocovariance probability function of high fractal dimension to simulate scattering-\(Q \) effects (Holliger, 1997). We consider correlation lengths of the order of a few km and a standard deviation of the velocity fluctuations of a few percent.

EQUATION OF MOTION

The time-domain equations for propagation in a heterogeneous viscoelastic medium can be found in Carcione (2001, p. 110). The anelasticity is described by the standard linear solid, also called the Zener model, that gives relaxation and creep functions in agreement with experimental results (Zener, 1948).

The two-dimensional velocity-stress equations for anelastic propagation in the \((x, z)\)-plane, assigning one relaxation mechanism to dilatational anelastic deformations (\(\nu = 1 \)) and one relaxation mechanism to shear anelastic deformations (\(\nu = 2 \)), can be expressed by

i) Euler-Newton’s equations:

\[
\dot{v}_x = \frac{1}{\rho} (\sigma_{xx,x} + \sigma_{xz,z}) + f_x, \quad (1)
\]

and

\[
\dot{v}_z = \frac{1}{\rho} (\sigma_{xz,x} + \sigma_{zz,z}) + f_z, \quad (2)
\]

where \(v_x \) and \(v_z \) are the particle velocities, \(\sigma_{xx} \), \(\sigma_{xz} \) and \(\sigma_{zz} \) are the stress components, \(\rho \) is the density and \(f_x \) and \(f_z \) are single body forces. A dot above a variable denotes time differentiation.

ii) Constitutive equations:

\[
\dot{\sigma}_{xx} = k(v_{xx,x} + v_{zz,z} + e_1) + \mu(v_{xx,x} - v_{zz,z} + e_2) + M_{xx}, \quad (3)
\]

\[
\dot{\sigma}_{zz} = k(v_{xx,x} + v_{zz,z} + e_1) - \mu(v_{xx,x} - v_{zz,z} + e_2) + M_{zz}, \quad (4)
\]

and

\[
\dot{\sigma}_{xz} = \mu(v_{xx,x} + v_{zz,z} + e_1) + M_{xz}, \quad (5)
\]

where \(e_1, e_2 \) and \(e_3 \) are memory variables, \(M_{xx}, M_{zz} \) and \(M_{xz} \) are moment tensor components defining the radiation pattern of the source mechanism, and \(k \) and \(\mu \) are the unrelaxed (high-frequency) bulk and shear moduli, respectively.
Memory variable equations:

\[\dot{e}_1 = \frac{1}{\tau_1^{(1)}} - \frac{1}{\tau_1^{(2)}} (\nu_{x,x} + \nu_{z,z}) - \frac{e_1}{\tau_1^{(1)}} \]
(6)

\[\dot{e}_2 = \frac{1}{\tau_2^{(1)}} - \frac{1}{\tau_2^{(2)}} (\nu_{x,x} + \nu_{z,z}) - \frac{e_2}{\tau_2^{(2)}} \]
(7)

and

\[\dot{e}_3 = \frac{1}{\tau_3^{(1)}} - \frac{1}{\tau_3^{(2)}} (\nu_{x,x} + \nu_{z,z}) - \frac{e_3}{\tau_3^{(2)}} \]
(8)

where \(\tau_1^{(n)} \) and \(\tau_2^{(n)} \) are material relaxation times, corresponding to dilatational (\(\nu = 1 \)) and shear (\(\nu = 2 \)) deformations. We recall that in a two-dimensional world, \(\mu = \rho \nu \) and \(k = \rho (V_2^2 + V_s^2) \), where \(V_p \) and \(V_s \) are the compressional- and shear-wave unrelaxed velocities.

The equations for the viscoacoustic medium are obtained from (1) - (8) by setting \(\sigma_\nu = \sigma_o = \rho, \sigma_z = 0 \) and \(\mu = 0 \). Then, the equations of motion are

\[\dot{v}_x = \frac{\sigma_x}{\rho} + f_x, \]
(9)

and

\[\dot{v}_z = \frac{\sigma_z}{\rho} + f_z, \]
(10)

where

\[\sigma = k (\nu_{x,x} + \nu_{z,z} + e_1). \]
(11)

together with the memory-variable equation (6). The introduction of additional differential equations for the memory variables avoids numerical computation of the convolution integrals involved in the viscoelastic stress-strain relation. Physically, the stress at time \(t \) depends on past values of the strain field, and this information is contained in the memory (hidden) variables. The extension of the theory to many dissipation mechanisms is straightforward (Carcione, 2001, p. 210). Using many mechanisms whose peak relaxation frequencies are equally spaced on the log-frequency axis, it is possible to model a constant \(Q \) stress-strain relation.

Complex velocities

The complex velocities of body waves, \(v_p \) and \(v_z \), are the key quantities to obtain the phase velocities and attenuation factors. They are defined by

\[\rho v_p^2(\omega) = k M_1(\omega) + \mu M_2(\omega), \quad \text{and} \quad \rho v_z^2(\omega) = \mu M_2(\omega) \]
(12)

(Carcione, 2001, p. 65, 85), where \(\omega \) is the angular frequency, and

\[M_v = \frac{\tau_0^{(v)}}{\tau_0^{(v)}} \left(1 + i \omega \tau_0^{(v)} \right), \quad v = 1, 2 \]
(13)

are the Zener complex moduli.

The relaxation times can be expressed as

\[\tau_0^{(v)} = \frac{\tau_0}{Q_0^v} \left(\frac{Q_0^v}{Q_0^v + 1} \right) \quad \tau_0^{(v)} = \frac{2 \tau_0}{Q_0^v}, \]
(14)

where \(\tau_0 \) is a relaxation time such that \(1/\tau_0 \) is the center angular frequency of the relaxation peak and \(Q_0^v \) are the minimum quality factors at this center frequency.

The quality factor, \(Q_0^v \), associated with the bulk modulus, is obtained from the relation

\[\frac{1 + \sigma}{Q_0^v} = \frac{3(1 - \sigma)}{Q_{0p}} - \frac{2(1 - 2\sigma)}{Q_{02}}, \quad \sigma = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - 2V_s^2)} \]
(15)

(Winkler and Nur, 1979), where \(Q_{0p} \) is a parameter related to the P-wave quality factor and \(\sigma \) is Poisson’s ratio.

Similarly, the complex velocity for the viscoacoustic medium is

\[\rho v_p^2(\omega) = k M_1(\omega). \]
(16)

PROPAGATION CHARACTERISTICS

A general plane wave solution for the particle velocity field \(\mathbf{v} = (v_x, v_z) \) is

\[\mathbf{v} = i \omega \mathbf{U} \exp \left[i \omega (t - s_x x - s_z z) \right], \]
(17)

where \(s_x \) and \(s_z \) are the components of the complex slowness vector, \(t \) is the time variable and \(\mathbf{U} \) is a complex vector. For homogeneous viscoelastic waves, the directions of propagation and attenuation coincide and

\[s_x = \sin \theta/\nu; \quad s_z = \cos \theta/\nu, \]
(18)

where \(\theta \) is the propagation angle, measured with respect to the z-axis, and \(\nu = 1/s \) is the complex velocity.

For homogeneous waves in isotropic media, the phase velocity and attenuation factors are given by

\[v_p = \frac{1}{\nu} \text{Re} \left(\frac{1}{\nu} \right)^{-1}, \]
(19)
\[\alpha = -\omega \text{Im}\left(\frac{1}{v}\right) \]

(20)

the group velocity is

\[v_g = v_p \left[\frac{1 - \frac{\omega}{v_p} \frac{dv_p}{d\omega}}{} \right]^{-1} \]

(21)

and the quality factor is given by

\[Q = \frac{\text{Re}(v^2)}{\text{Im}(v^2)} \]

(22)

(e.g., Carcione, 2001), where \(v \) for body waves is given in the previous section (equations (12)-(16)), and \(v \) for interface waves is given in the next section. The concept of group velocity must be used with caution, since it loses physical meaning for highly anelastic media (Carcione, 2001, p. 145).

DISPERSION EQUATIONS

Ocean overlying the crust

Press and Ewing (1950) and Biot (1952) obtained the dispersion equation for the phase velocity as a function of wavelength (see Ewing et al., 1957, p. 156).

Solution of the problem implies traction-free boundary conditions at the sea surface and continuity of normal stress (pressure in the fluid) and normal displacement at the ocean bottom. The dispersion equation can be expressed as

\[
\tan\left(\frac{\omega H}{v} \sqrt{\frac{v^2}{v_p^2} - 1}\right) = \frac{\rho_p v_p^2}{\rho_m v^2} \left[\frac{v^2}{v_p^2} - 1 \right] - \frac{1 - v^2}{v_p^2} - \left(2 - \frac{v^2}{v_p^2} \right)^2 \right]
\]

(23)

where 1 denotes the fluid and 2 the solid, \(v \) is the complex velocity of the interface wave, and \(H \) is the water depth. The wave system described by equation (23) will be attenuated for complex \(v \). In the absence of viscoelastic dissipation, the energy loss is associated with refraction of waves from the liquid layer into the solid bottom. For the lossless case and \(V_{p1} > V_{s2} > V_{p1} \), which is considered in this work, undamped propagation occurs for

- **I** \(V_{p2} > V_{s2} \), \(v \equiv V_{p1} \)

- **II** \(V_{p2} > V_{s2} > V_{p1} \) \(v \).

The branch of lowest velocity shows a continuous transition between Scholte waves at the ocean bottom and free Rayleigh waves at the crust when going from short wavelengths to long wavelengths (compared to the water depth).

Sediment layer overlying the crust

We solve the dispersion equation in the form obtained by Ewing et al. (1957, p. 190). For completeness the dispersion equation is given in the appendix. The difference with Ewing et al.’s analysis resides in the inclusion of anelasticity, and therefore, the velocities involved in the dispersion equation are complex and frequency-dependent. The phase velocity of the first mode of the \(M_1 \) branch (\(M_{11} \)) tends to the velocity of the Rayleigh wave of the half space at long wavelengths, and approaches the velocity of the Rayleigh wave of the layer at short wavelengths. This is the relevant branch regarding the propagation of earthquake Rayleigh waves (Ewing et al., 1957, p. 195). The Stoneley modes at the interfaces are related to the \(M_z \) branch.

MODELING METHOD AND DOMAIN DECOMPOSITION

Wave propagation in the continental crust (and mantle) is modeled using the heterogeneous formulation of the viscoelastic wave equation used by Carcione (1992) to simulate Rayleigh waves for seismic exploration applications. The transition continent-ocean is modeled by using the same formulation and setting the shear modulus of the ocean equal to zero. A domain-decomposition technique is developed and tested to model wave propagation at the ocean bottom. The algorithm is given in detail in the following subsection.

Domain decomposition

We implement a domain-decomposition technique and use the viscoacoustic wave equation to model propagation in the ocean. Two grids model the fluid and the solid subdomains (labeled 1 and 2, respectively). The boundary conditions between subdomains require continuity of

\[v, \alpha_\sigma, \text{ and } \alpha_c (= 0). \]

(24)

The solution on each of the two grids is obtained by using the Runge-Kutta method for time stepping and the Fourier and Chebyshev differential operators to compute the spatial derivatives in the horizontal and vertical directions, respectively (Carcione, 1992, 1994a, 2001). Chebyshev transforms are computed with the FFT, with a length twice of that used by the Fourier method (Gottlieb and Orszag, 1977). Since the sampling points are very dense at the edges of the mesh, the Chebyshev method requires a one-dimensional stretching transformation to avoid very small time steps (Kosloff and Tal-Ezer, 1993). To combine the two grids, the wave field is decomposed into incoming and outgoing wave modes at the interface between the solid and the fluid. The inward propagating waves depend on the solution exterior to the sub-domains and therefore are computed from the
boundary conditions (24), while the behavior of the outward-propagating waves is determined by the solution inside the subdomain. The approach, given in Carcione (1991), and adapted here for equations (1)-(11), involves the following equations for updating the field variables at the grid points defining the fluid-solid interface:

\[
\begin{align*}
\nu_z^{\text{new}}(1) &= \nu_z^{\text{old}}(1), \\
\nu_z^{\text{new}} &= [Z_P(1) + Z_P(2)]^{-1} \left[Z_P(2) \nu_z^{\text{old}}(2) + Z_P(1) \nu_z^{\text{old}}(1) - \alpha_z^{\text{old}}(1) - \alpha_z^{\text{old}}(2) \right], \\
\sigma_z^{\text{new}} &= \nu_z^{\text{new}} = Z_P(1)Z_P(2) \left[\nu_z^{\text{old}}(1) - \nu_z^{\text{old}}(2) \right] + \frac{\sigma_z^{\text{old}}(1)}{Z_P(1)} + \frac{\sigma_z^{\text{old}}(2)}{Z_P(2)}, \\
e_1^{\text{new}}(1) &= e_1^{\text{old}}(1) + \left[\phi_1(1)/k(1) \right] \left[\sigma_z^{\text{new}} - \sigma_z^{\text{old}}(1) \right], \\
v_x^{\text{new}}(2) &= v_x^{\text{old}}(2) - \alpha_{xz}^{\text{old}}(2)/Z_S(2), \\
\sigma_{xz}^{\text{new}}(2) &= 0, \\
\sigma_{xx}^{\text{new}}(2) &= \sigma_{xx}^{\text{old}}(2) + \frac{k(2) - \mu(2)}{k(2) + \mu(2)} \left[\sigma_{xx}^{\text{old}}(2) - \sigma_z^{\text{old}}(2) \right].
\end{align*}
\]

(25)

where \(\phi_1 = 1/\tau_z^{\text{vis}} - 1/\tau_z^{\text{el}}, Z_P(1) = \rho_1 V_{P1} Z(2) = \rho_2 V_{P2}, \) and \(Z_S(2) = \rho_2 V_{S2}. \) The update is performed at each time step.

The upper boundary of subdomain 1 may satisfy free-surface or non-reflecting boundary conditions (Carcione, 1992; 1994a,b). The free-surface boundary equations are

\[
\begin{align*}
v_x^{\text{new}} &= v_x^{\text{old}}, \\
v_z^{\text{new}} &= v_z^{\text{old}} - \alpha_z^{\text{old}}/Z_P, \\
\sigma_z^{\text{new}} &= 0, \\
e_1^{\text{new}} &= e_1^{\text{old}} - \left[\phi_1/k \right] \sigma_z^{\text{old}}.
\end{align*}
\]

(26)

The non-reflecting boundary equations are

\[
\begin{align*}
v_x^{\text{new}} &= \frac{1}{2} \left[v_x^{\text{old}} - \alpha_z^{\text{old}}/Z_P \right], \\
\sigma_z^{\text{new}} &= \frac{1}{2} \left(\alpha_z^{\text{old}} - Z_P v_z^{\text{old}} \right), \\
e_1^{\text{new}} &= e_1^{\text{old}} - \left[\phi_1/(2k) \right] \left(\alpha_z^{\text{old}} + Z_P v_z^{\text{old}} \right).
\end{align*}
\]

(27)

The lower boundary of subdomain 2 satisfies non-reflecting boundary conditions (Carcione, 1992, 1994a-b):

\[
\begin{align*}
v_x^{\text{new}} &= \frac{1}{2} \left(v_x^{\text{old}} + \alpha_{xz}^{\text{old}}/Z_S \right), \\
\sigma_{xz}^{\text{new}} &= \frac{1}{2} \left(\alpha_{xz}^{\text{old}} + Z_P v_z^{\text{old}} \right), \\
\sigma_{xx}^{\text{new}} &= \frac{1}{2} \left(\alpha_{xx}^{\text{old}} + Z_P v_x^{\text{old}} \right), \\
\sigma_{zz}^{\text{new}} &= \frac{1}{2} \left(\alpha_{zz}^{\text{old}} + Z_P v_z^{\text{old}} \right).
\end{align*}
\]

(28)

(Note that to obtain the boundary equations for the opposite boundary, say, horizontal boundaries, the method requires the following substitutions: \(z \rightarrow x, \) which implies \(v_z \rightarrow v_x, \) \(\sigma_z \rightarrow \sigma_{xx}, \) and \(e_1 \rightarrow e_x. \)) In addition to the non-reflecting conditions, absorbing strips are used to further attenuate the wave field at non-physical boundaries (Carcione, 1992). The damping function is a hyperbolic cosine and the performance is quite acceptable. A better approach would be the perfectly-matched layer method used in electromagnetism (Berenger, 1994). This method is based on a non-physical modification of the wave equation inside the absorbing strips, such that the reflection coefficient at the strip/model boundary is zero.

Scattering

Scattering caused by heterogeneities in the crust and mantle is modeled as variations in the unrelaxed wave velocities. Let \(\Delta V_x \) be the maximum deviation of the velocity field from the background value \(V_x \) (P- or S-wave). The velocity field at \((\gamma, z) \) is first subjected to the variations \((\Delta V_x)^{\gamma} \), such that

\[\Delta V_x \leq (\Delta V_x)^{\gamma} \leq \Delta V_x, \]

(29)

where \((\Delta V_x)^{\gamma} \) is obtained from a 2-D random generator, and the superscript “\(^{\gamma} \)” denotes random. (Random numbers between 0 and 1 are generated and then scaled to the interval \([-1, 1]\) \(\Delta V_x \).)

Wave velocity variations in the lithosphere are well described by the von Kármán autocovariance function (Frankel and Clayton, 1986; Holliger, 1997). The corresponding wavenumber-domain power spectrum is

\[P(k_x, k_z) = K(1 + k^2 a^2)^{(\nu+1)/2}, \]

(30)

where \(k = \sqrt{k_x^2 + k_z^2} \) is the wavenumber, \(a \) is the correlation length, \(\nu(0 < \nu < 1) \) is a self-similarity coefficient, \(K \) is a
normalization constant, and N is the Euclidean dimension. The von Kármán correlation function describes self-affine, fractal processes of fractal dimension $N + 1 - \nu$ at a scale smaller than a.

The velocity is then calculated as

$$V(x, z) = V_0 \pm \Delta V(x, z), \quad (31)$$

where

$$\Delta V(k_x, k_z) = (\Delta V)'(k_x, k_z)P(k_x, k_z), \quad (32)$$

with $(\Delta V)'(k_x, k_z)$ being the Fourier transform of $(\Delta V)'(x, z)$. (The bar denotes the space Fourier transform.)

To compute consistent random variations of the S-wave velocity (with respect to the P-wave velocity), we use the relation

$$(\Delta V_s)'(x, z) = \gamma (\frac{\Delta V_{so}}{\Delta V_{po}}) (\Delta V_p)'(x, z).$$

EXAMPLES

In this section, we test the modeling algorithm with an analytical solution, model the Rayleigh-window phenomenon, show examples of wave propagation in the oceanic and continental crusts, and simulate a real earthquake. The properties of water used are $V_{r_1} = 1500$ m/s, $\rho_1 = 1000$ kg/m3, and $Q_{90}^{-1} = 0.0001$.

Comparison with analytical solution

We test the domain-decomposition method by comparing numerical and analytical solutions, with special attention to the simulation of Scholte and leaky Rayleigh waves.

The analytical solution for the fluid-solid plane interface in lossless media is obtained by the method of Cagniard-de Hoop (de Hoop and van der Hjiden, 1983; Berg et al., 1994). The two grids, corresponding to the fluid and solid phases, each have 405×81 points with a grid spacing of 1.5 km in the horizontal direction and a vertical size of 90 km (the locations of the closest grid point to the interface are 225 and 115 m for the fluid and solid meshes, respectively). The source is a vertical force applied to the surface of the ocean bottom, and has a Ricker wavelet with a dominant frequency of 0.1 Hz. The receiver is located at 300 km from the source and at 115 m below the interface. We consider a hard ocean bottom, which implies a high material contrast at the interface and the presence of a strong leaky Rayleigh wave. The properties of the ocean bottom are $V_{r_1} = 5712$ m/s, $V_{s_2} = 3356$ m/s, and $\rho_2 = 2500$ kg/m3. Solution of the Scholte-wave dispersion equation (e.g., Brekhovskikh and Lysanov, 1991, p. 67) yields a velocity of 1496 m/s for the Scholte wave and 3091 m/s for the leaky Rayleigh wave. The Runge-Kutta algorithm requires a time step of 0.04 s for stability and accuracy. The numerical and analytical solutions are compared in Figure 1, where it is clear that the agreement is very good.

Figure 2 shows the numerical solutions of the v_r-component for the elastic (a) and viscoelastic (b) cases (dashed and solid lines, respectively). The viscoelastic ocean bottom has the parameters $Q_{90} = 200$ and $Q_{90} = 100$ at 0.1 Hz. Anelasticity affects the leaky Rayleigh wave more than the other events.

The Rayleigh window

The Rayleigh-window phenomenon has been investigated by Borcherdt et al. (1986), who found that the window should be observable in appropriate sets of wide-angle reflection data and that it can be useful in estimating attenuation for various ocean bottom reflectors.

Modeling the Rayleigh window serves to evaluate the performance of the domain-decomposition method in viscoelastic media. We perform a numerical evaluation of the reflection coefficient versus incidence angle from synthetic data generated by the modeling algorithm. The technique has been used by Kindelan et al. (1989) for lossless media. Figure 3 shows the comparison of the numerical and analytical P-wave reflection coefficient (a) and phase angle (b) for the oceanic crust defined by $V_{r_2} = 4850$ m/s, $V_{s_2} = 2800$ m/s, $\rho = 2600$ kg/m3, $Q_{90} = 1000$ and $Q_{90} = 10$. The modeling algorithm correctly simulates the Rayleigh-window phenomenon, i.e., the magnitude of the reflection coefficient and phase-change slope. The mismatch between theory (e.g., Carcione, 2001) and numerical experiments is due to the fact that the receivers are located at $h = 1.2739$ m above the interface. Then, there is a phase shift between the incident wave and the reflected wave. At normal incidence, the correction is $\arctan(2hos / V_{r_1})$. For a frequency of $f = 20$ Hz and $V_{r_1} = 1480$ m/s, we obtain 12° of phase shift, which coincides with the mismatch observed in Figure 3.

It is difficult to observe the Rayleigh-window phenomenon in the space-time domain, since the reflected pulse is masked by the head wave, because the window is located beyond the S-wave critical angle. The results of Figure 3 constitute a further confirmation of the correctness of the modeling method. To our knowledge, this is the first simulation of this phenomenon by using direct grid methods.

Propagation in the oceanic crust

The physics of wave propagation in the ocean is characterized by the propagation of infinite modes, showing ve-
velocity dispersion (Biot, 1952). We consider the ocean overlying a solid half space to model the physics illustrated in the previous section. The properties of the ocean bottom used are $V_p^2 = 5712$ m/s, $V_s^2 = 3356$ m/s, and $\rho_2 = 2500$ kg/m3.

Figure 4 shows the normalized phase (a) and group (b) velocities of the fundamental mode R_0 (lowest branch) and the next three higher modes R_1, R_2, and R_3 versus the normalized frequency $\gamma = f H / V_p = H / \lambda$, where $f = \omega / 2\pi$ and λ is the wavelength. In the long-wavelength limit ($\gamma \to 0$), the phase and group velocities of R_0 tend towards an asymptotic value equal to 3078 m/s = $0.917 V_s^2$ which is the velocity of the Rayleigh wave traveling along the free surface of the solid half space. The continuous transition between the fundamental mode R_0 and the Scholte wave takes place at $\gamma = 2.162$ where $v_p = V_p$. The Scholte wave velocity is slightly lower than the speed of sound in water, tending towards an asymptotic value $v_p = 0.997 V_p$ for high frequencies. The higher modes display their characteristic features, starting at $v_p = V_s^2$ for the limiting values of γ, corresponding to the onset.
frequency of the individual mode, and approaching V_{p1} in the short-wavelength limit ($\gamma \to \infty$). Their group velocity maxima (the Airy phase), on the other hand, gradually decrease with increasing order, which is a common feature observed in real seismograms (e.g. Chapman and Staal, 1991; Forsyth, 2000).

The viscoelastic ocean bottom (dashed lines) has the parameters $Q_{01} = 200$ and $Q_{02} = 100$, and the center of the relaxation peaks at $1/\tau_0 = 0.166$ Hz (see equations (13) and (14)), corresponding to $\gamma = 10$ as shown in Figure 4c. The corresponding relaxation peaks for the Rayleigh waves are located at lower frequencies, with their location and value increasing with increasing mode number. Notice that the location of the relaxation peaks (c) coincide with points of maximum curvature of the phase velocity v_p (a), or maximum slope of the group velocity v_g (b). The location of a small peak in the Scholte wave attenuation coincides with that of the body waves.

Consider a comparison of the model predictions with real data. Attenuation of dispersed surface waves traveling along an oceanic path has been analyzed by Ben-Menahem and Singh (1981). Their results show that the attenuation coefficient for the fundamental mode Rayleigh wave, defined by

$$\Gamma = \frac{\pi}{v_g Q T} , \quad (34)$$

where $T = 1/f$ is the wave period, reveals some striking features; a monotonic increase in attenuation is apparent, from $T = 100$ s to a broad maximum centered around $T = 45$ s. Then, a minimum in attenuation at $T = 23$ s is followed by a steep increase towards the short-period range.

Fig. 2. Numerical solutions of the v_z-component for the elastic and viscoelastic cases (dashed and solid lines, respectively). The source is a compressional force applied to the solid at 115 m below the interface. The receiver is located at the same horizontal position and at 300 km from the source. The different waves are indicated.

Fig. 3. The Rayleigh window at the ocean-crust interface. P-wave reflection coefficient (a) and phase angle (b) versus incidence angle. The solid line corresponds to the analytical reflection coefficient and the symbols to the numerical evaluation at 18, 19 and 20 Hz.
Using their data for the fundamental-mode Rayleigh wave traveling across the Atlantic, from Toledo (Spain) to Trinidad island, we have solved for the corresponding roots of the dispersion equation (23) for the simple two-layer model. Figure 5 shows the attenuation (34), and phase and group velocities obtained for models with ocean depths \(H = 5, 10 \) and 15 km, respectively. The data of Ben-Menahem and Singh (1981) are shown for comparison. The main features from all their observations covering an extended period range, as summarized in their Figure 10.18, are well reproduced in the modeling shown in Figure 5a, using realistic material properties for the solid half-space to match the observed velocities in Figure 5b (\(V_{S2} = V_{R0}/0.9 \), \(V_{P2} = \sqrt{V_{S2}^2 + 2.8} \)). However, to match their attenuation data, in particular the locations of the attenuation minimum and maximum at 23 and 45 seconds, an unrealistic value of

![Diagram](image.png)

Fig. 4. Normalized phase velocity (a), group velocity (b) and dissipation factor (c) of the fundamental-mode Rayleigh wave \(R_0 \) and the three higher modes \(R_1-R_3 \) for an elastic (solid line) and anelastic crust (dashed line). The transition (indicated by a triangle) between the fundamental mode \(R_0 \) to a Scholte wave is shown in detail in (a). Notice the shift to lower frequencies of the Rayleigh-wave attenuation peaks compared to those of the body waves and Scholte wave (c).
the ocean depth of 15 km has to be applied, indicating that the two-layer model is an over-simplification of reality.

Sensitivity to H is also seen in the phase and group velocities in Figure 5b. As in Figure 4, $v_{R0} \rightarrow v_{\text{chol}}$ for small values of T, with the transition point depending on the value of $H(T = 0.7, 1.4$ and 2.2 sec for $H = 5, 10$ and 15 km, respectively). When $T \rightarrow \infty$, for all values of H, the velocities tend to the velocity of R_0 for the elastic half-space.

Let us now perform the simulation of seismograms using the domain-decomposition modeling method. In the first model, the wavelength of the pulse is much smaller than the water depth (the long-wavelength limit). We consider that the two meshes have 405×81 grid points. The horizontal grid spacing is 1.5 km and the vertical size of each mesh is 90 km. (The locations of the closest grid point to the interface are 225 and 115 m for the fluid and solid meshes, respectively). The source location is 2.7 km below the ocean.
bottom (sixth grid point), and has a dominant frequency of 0.166 Hz. The water depth to wavelength ratio is 10 (the dominant wavelength in the ocean is 9 km). The traction-free boundary conditions (26) are satisfied at the upper boundary (the sea surface). Forty grid points are used as absorbing boundary at the sides of both meshes and bottom of the lower mesh (in addition to the non-reflecting conditions (27)). The time step of the Runge-Kutta algorithm is 0.06 s. Figure 6 shows a synthetic seismogram of the vertical particle-velocity component, recorded at the ocean bottom, for the lossless case (a), and a comparison between traces at 180 km from the source for the lossless (dashed line) and lossy (solid line) media (b). The viscoelastic ocean bottom has the parameters $Q_{01} = 200$ and $Q_{02} = 100$. The leaky Rayleigh wave and the shear body wave can hardly be separated in the synthetic traces. The energy of the leaky Rayleigh wave is radiated into the ocean as a head P wave, under the Rayleigh angle (64° with respect to the ocean-bottom interface). This is the reason for the amplitude attenuation with increasing distance. On the contrary, the Scholte wave, being a real root of the dispersion equation, shows no attenuation with increasing distance.

Fig. 6. Synthetic seismogram of the vertical particle-velocity component at the ocean bottom for the lossless case (a), and comparison between traces at 180 km from the source for the lossless (dashed line) and lossy (solid line) simulations. The experiment corresponds to the classical problem solved by Biot (1952) for short-wavelengths. The labeled events are the P wave in the crust (P wave), the S wave in the crust (S wave), the leaky Rayleigh wave (leaky R wave), the Scholte wave, the reflection of the P wave at the ocean surface, and the reflection at the surface of the head wave connecting the P wave in the ocean with the P(S) wave in the crust (PPH-P (PSH-P)).
The existence of the leaky wave is subject to the condition that the sound velocity in the liquid must be less than the shear velocity in the solid (this a necessary but not a sufficient condition). The leaky Rayleigh wave approaches the Rayleigh wave as the density of the liquid tends to zero. Hence, the Rayleigh wave in a vacuum solid interface is not a Scholte wave when the density of the liquid goes to zero.

While the free Rayleigh wave always exists, the leaky Rayleigh wave does not (Brower et al., 1979). Most quasi-surface waves, corresponding to roots lying on lower Riemann sheets, are not always physically separable on experimental or numerical simulations because of their close association with body-wave phases. For instance, Phinney (1961) predicts a pseudo-P pulse coupled to the P wave.

Fig. 7. Synthetic seismograms of the vertical particle-velocity component at the ocean bottom for the lossless (a) and lossy (b) cases. The experiment corresponds to the classical problem solved by Biot (1952) for the long-wavelength limit.
For a hard fluid-solid interface, the leaky wave has a velocity slightly lower than the body-wave shear velocity, and the Scholte wave velocity is lower than the liquid sound velocity. As the solid becomes stiffer, the Scholte wave velocity approaches that of the liquid. For soft solids (body-wave shear velocity lower than the sound velocity of the liquid), the leaky Rayleigh-type root is not a physical solution.

For the long-wavelength limit, the vertical size of the ocean mesh is 4 km (water depth). The location of the second and penultimate grid points of the upper mesh are 33 and 65 m, respectively, while the location of the second grid point of the lower mesh is 128 m. In this case, the water depth to wavelength ratio is equal to 0.44 (the dominant wavelength in the ocean is 9 km). Figure 7 shows synthetic seismograms of the vertical particle-velocity component recorded at the ocean bottom for the lossless (a) and lossy (b) cases. The first train of events is a cluster of superimposed wave packets, composed of \(R_i, i = 1, \ldots, n \), with the higher frequencies (higher modes) at the tail of the train. These events are Airy phases related to the group velocity maxima (see Figure 4b). The last, low frequency, train of events is related to the Airy-phase minimum of the fundamental mode \(R_0 (\gamma = 0.31) \) (Figure 4b). This interpretation is also justified by the low attenuation of the latter train compared to the higher attenuation of the first wave train (Figure 4c).

Propagation in the continental crust

To model wave propagation in the continental crust, we consider a sediment layer overlying the crust, modeled as a solid layer overlying a solid half-space. The dispersion equation is given in the appendix. The sediment layer has a thickness of 5.6 km and the following properties: \(V_{p1} = 2500 \text{ m/s} \), \(V_{s1} = 1200 \text{ m/s} \), \(\rho_1 = 2100 \text{ kg/m}^3 \), \(Q_{01} = 200 \) and \(Q_{02} = 100 \). The properties of the crust are \(V_{p2} = 5712 \text{ m/s} \), \(V_{s2} = 3356 \text{ m/s} \), \(\rho_2 = 2500 \text{ kg/m}^3 \), \(Q_{01} = 400 \) and \(Q_{02} = 500 \). Figure 8 shows the normalized phase (a) and group (b) velocities of the fundamental-mode surface wave \(M_{11} \) and the three higher modes for an elastic (solid line) and anelastic (dashed line) model of the continental crust. The broken and dotted lines in (c) are the dissipation factors of the P and S body waves, respectively.

We perform a simulation of an earthquake, where the mesh has 405 \(\times \) 101 points with a grid spacing of 1.5 km in the horizontal direction and a vertical size of 106 km. The source is a horizontal force at 7.15 km depth (below the sediment-crust interface), with a central frequency of 0.166 Hz (\(\gamma = fH/V_{s1} = 0.77 \)). The modeling method developed by Carcione (1992) is used for the simulation and the time step of the algorithm is 0.04 s. Figure 9 shows synthetic seismograms of the horizontal (a) and vertical (b) particle-velocity components, recorded at the surface. A single trace at 300 km from the epicenter is shown in Figure 10. Three wave trains can be distinguished, particularly in the horizontal component. In Figure 10, the first arrival (50 s) is the compressional body wave. Then follows the \(M_{12} \) mode (100 s) and the fundamental mode (250 s). The indicated arrival times correspond to the onset of the stronger events. The band-like...
frequency content of the source implies that the different modes cannot be identified with confidence in the seismograms.

Simulation of an earthquake in the South Atlantic

The modeling algorithm allows us to investigate cases of complex geology, which apply to the propagation of earthquake surface waves across the ocean-continent transition and regions of lateral velocity variations. The algorithm developed by Carcione (1992) is used for the following simulation, where the S-wave velocity of water is set to a very small number to preclude the propagation of shear waves in the ocean. The free surface conditions are singular for $V_S = 0$ [see Carcione (1992)]. We simulate the January 7, 2000 earthquake ($M_w = 5.5$) recorded at Ushuaia seismograph station.
Simulation of seismograms in a 2-D viscoelastic Earth by pseudospectral methods

(USHU) (Figure 11). The location of the epicenter is indicated by a star, and the source has a depth of 15 km below the sea level (this event is indicated as 010700A in the Harvard CMT Catalog). The real seismograms are shown in Figure 12. Figure 13 shows the two-dimensional model, where the numbers indicate the different layers, whose properties are given in Table 1. The main features of the model have been obtained from lithosphere CRUST 5.1 (Mooney et al., 1998) and tomography results published by Vuan et al. (2000).

The mesh has 729×101 points with a grid spacing of 1.5 km in the horizontal direction and a vertical size of 106.5 km (the location of the closest grid point to the surface is 174 m). The source is a dip-slip moment tensor with components $M_{xx} = -M_0 \sin 2\delta$, $M_{zz} = M_0 \sin 2\delta$ and $M_{xz} = -M_0 \cos 2\delta$, where M_0 is the moment and δ is the dip angle. The rake and strike angles are both equal to $\pi/2$ (e.g., Aki and Richards, 1980, p. 117). Here, we consider $M_0 = 1$ and $\delta = 40^\circ$. The source has a frequency-domain Gaussian function with a peak at 0.2 Hz, and Ushuaia station (the receiver) is located at 870 km from the epicenter. The Runge-Kutta algorithm requires a time step of 0.04 s. Figure 14 shows the simulated horizontal (radial) and vertical components of the wave field. The qualitative aspects of real seismograms are modeled successfully, namely body waves and the fundamental Rayleigh mode. The differences are due to the fact that the numerical modeling is two dimensional and that the model is not well defined in the study area. We do not intend to obtain a perfect fit between the real and synthetic data, because it is not the aim of this work, and because the 2-D nature of the modeling and the low resolution of the CRUST 5.1 velocity model do not allow such a detailed comparison. Extension of the algorithm to three dimensions, which can be done by using the Fourier pseudospectral method in the y direction (Tessmer, 1995), and incorporation of anisotropy, are necessary to improve the simulation. In this sense, the algorithm developed by Tessmer should be generalized to include the effects of wave dissipation.

CONCLUSIONS

We have applied and improved the viscoelastic global pseudospectral modeling algorithm to simulate wave propagation generated by earthquakes, with particular attention to anelastic phenomena. The high accuracy of the modeling has been verified with the analytical solution for a fluid-elastic solid plane boundary, and modeling Scholte waves, leaky Rayleigh waves, and the Rayleigh-window (this constitutes the first simulation of this phenomenon with a direct grid method). The modeling allows for the presence of the sea surface and general material variability along the vertical and horizontal directions.
Table 1

Properties of the crustal model. (Unrelaxed P- and S-wave velocities, density, P-wave, dilatational and S-wave quality factors, correlation length, maximum P- and S-wave velocity variations and fractal number.)

<table>
<thead>
<tr>
<th>Layer</th>
<th>V_p (km/s)</th>
<th>V_s (km/s)</th>
<th>ρ (g/cm³)</th>
<th>Q_p</th>
<th>Q_s</th>
<th>Q_s/Q_p</th>
<th>ΔV_p</th>
<th>ΔV_s</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0</td>
<td>1</td>
<td>10^4</td>
<td>10^4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>1.2</td>
<td>2.1</td>
<td>150</td>
<td>193</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>1.6</td>
<td>2.3</td>
<td>200</td>
<td>240</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>3.4</td>
<td>2.7</td>
<td>400</td>
<td>533</td>
<td>300</td>
<td>4</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>6.6</td>
<td>3.65</td>
<td>2.9</td>
<td>450</td>
<td>636</td>
<td>320</td>
<td>6</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>4</td>
<td>3.05</td>
<td>500</td>
<td>606</td>
<td>400</td>
<td>8</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>8.1</td>
<td>4.5</td>
<td>3.2</td>
<td>500</td>
<td>606</td>
<td>400</td>
<td>8</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

This work is a first step towards a complete realistic wave simulation. Ongoing research includes the extension of the modeling algorithm to the three-dimensional anelastic case and anisotropic media, since anisotropy can be important in the upper mantle. The 3-D extension of the algorithm is required to model Love waves (including coupling to Rayleigh waves), and the complete characterization of the earthquake source by the moment-tensor components.

ACKNOWLEDGMENTS

This work was supported by Norsk Hydro a.s. (Bergen, Norway), Direzione Generale per la Promozione e la Cooperazione Culturale (Ministero degli Affari Esteri, Italy), and Secretaría de Ciencia, Tecnología e Innovación Productiva (Ministerio de Educación, Ciencia y Tecnología, Argentina). We thank Francisco J. Sánchez Sesma for reviewing the paper.
Fig. 13. Geological model at the Scotia Plate to simulate the January 7 (2000) earthquake recorded at Ushuaia station. Layer numbers (1-7) correspond to those of Table 1.

Fig. 14. Simulation of the vertical and radial seismograms of the January 7 (2000) earthquake recorded at Ushuaia station. The labels P, S and R indicate the compressional, shear and Rayleigh waves.
APPENDIX

DISPERSION EQUATION FOR A SOLID LAYER OVER A SOLID HALF-SPACE

Consider a layer of thickness H over a half-space, and define the wavenumbers

$$ k_{pi} = \frac{\omega}{u_{pi}}, \quad k_{Si} = \frac{\omega}{u_{Si}}, \quad v_i = \sqrt{k_v^2 - k_{pi}^2}, \quad v'_i = \sqrt{k_v^2 - k_{Si}^2}, \quad i = 1, 2 $$

(A-1)

$$ k = \frac{\omega}{v} $$

(A-2)

and

$$ \eta = \frac{\rho_i u_{S_i}^2}{\rho_S u_{S_i}^2} $$

(A-3)

where v is the complex velocity of the interface wave, and 1 and 2 refer to the layer and half-space, respectively. The dispersion equation results from the boundary conditions, i.e., stress-free conditions at the surface and continuity of stress and displacements at the interface. It is given by

$$ \det \begin{pmatrix}
(2k_v^2 - k_{Si}^2) \exp(v_i H) & 2v_i \exp(v_i' H) & (2k_v^2 - k_{Si}^2) \exp(-v_i H) \\
2kv_i \exp(v_i H) & (2k_v^2 - k_{Si}^2) \exp(v_i' H) & -2kv_i \exp(-v_i H) \\
-k & -v_i' & -k \\
-v_i & -k & v_i \\
2kv_i & 2k_v^2 - k_{Si}^2 & -2kv_i \\
2k_v^2 - k_{Si}^2 & 2kv_i & 2k_v^2 - k_{Si}^2
\end{pmatrix} = 0. $$

(A-4)

In compact analytical form, this determinant is given by

$$ \det(*) = -16(2 - s_j^2)\pi_i \sigma_i \left[(2 - 2\eta + \eta s_j^2)^2 - 4(1 - \eta^2)\pi_i \sigma^2 \right] $$

$$ -2(1 - \eta)(1 - \pi_i \sigma_i)(s_j^2 - \eta s_j^2) $$

$$ + (4\pi_i \sigma_i + (2 - s_j^2)^2)[\exp(\gamma(\pi_i - \sigma_i)) + \exp(-\gamma(\pi_i - \sigma_i))] $$

$$ \left[(1 - \pi_i \sigma_i)(4 - 4\eta - s_j^2)s^2_j - (1 + \pi_i \sigma_i)((2 - 2\eta + \eta s_j^2)^2 + 4(1 - \eta^2)\pi_i \sigma_2^2) \right] $$

$$ -\exp(\gamma(\pi_i - \sigma_i))\eta(2 - \pi_i \sigma_i + \pi_i \sigma_2) s_j^2 $$

$$ -\exp(-\gamma(\pi_i - \sigma_i))\eta(2 + \pi_i \sigma_i - \pi_i \sigma_2) s_j^2 $$

$$ -(4\pi_i \sigma_i - (2 - s_j^2)^2)[\exp(-\gamma(\pi_i + \sigma_i)) + \exp(\gamma(\pi_i + \sigma_i))] $$

$$ \left[(1 - \pi_i \sigma_i)(4 - 4\eta - s_j^2)s^2_j - (1 - \pi_i \sigma_i)((2 - 2\eta + \eta s_j^2)^2 - 4(1 - \eta^2)\pi_i \sigma_2^2) \right] $$

$$ +\exp(-\gamma(\pi_i + \sigma_i))\eta(2 - \pi_i \sigma_i + \pi_i \sigma_2) s_j^2 $$

$$ +\exp(\gamma(\pi_i + \sigma_i))\eta(2 + \pi_i \sigma_i + \pi_i \sigma_2) s_j^2 $$

with $\gamma = kH$, and

$$ p_j = \frac{v}{u_{pi}}, \quad s_j = \frac{v}{u_{S_i}}, \quad \pi_i = \sqrt{1 - \left(\frac{v}{u_{pi}}\right)^2}, \quad \alpha_j = \sqrt{1 - \left(\frac{v}{u_{S_i}}\right)^2}, \quad i = 1, 2. $$

(A-5)

BIBLIOGRAPHY

José M. Carcione1, Hans B. Helle2, Géza Seriani1 and Milton P. Plasencia Linares3

1 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy. Fax: 0039 040 327521 Email: jcarcione@ogs.trieste.it

2 Norsk Hydro a.s., 0 & E Research Centre, N-5020 Bergen, Norway; Fax: +47 55 996920 Email: hans.b.helle@hydro.com

3 Departamento de Sismología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata Paseo del Bosque s/n, B1900WA La Plata, Argentina. Fax: 0054 221 4236591 Email: milton@fcaglp.unlp.edu.ar